Rings of Polynomials

Let R be aring and let x be called an indeterminant (as opposed to a variable).

Def. A polynomial f (x) with coefficients in R is any expression of the form:

0
Z aixt = ag + a1 x + ax? + -+ apx™ + -
i=0
where a; € R and a; = 0 for all but a finite number of values of i. The
a;’s are coefficients of f (x). The largest i for which a; # 0 is called the
degree of the polynomial. If for all i, a; = 0, then we say the degree of
f (x) is undefined.

Let R[x] = {set of polynomials, f (x), with coefficients in R}.

Notice that R [x] is also a ring where addition and multiplication is defined in the
usual way:

FO0) = ag + ayx + ayx? + -+ @y’ + -

g(x) = bg + byx + byx? + -+ + bpx™ + -

Then, f(x) + g(x) = co + c1x + cx% + -+ cpx™ + -,
where ¢; = a; + b;

and f)g(x) =dy +dix + dyx? + -+ dpx™ + -
where d; = 23-20 a; b(i—j)-

Notice that if R is not commutative then neither is R[x]. If R is commutative
then so is R[x].

The additive identity element for R[x] is f(x) = 0 and the multiplicative
identity elementis g(x) = 1.



Showing that R[x], + is an abelian group and that R[x] satisfies multiplicative
associativity and the distributive laws is messy but straight forward.

Ex. Let Z,[x] = R[x]. Calculate (x + 1)? and (x + 1) + (x + 1).

x+1D)2=(x+DxE+1D)=x*+Q+Dx+1=x%+1
x+D)+(x+1D)=0+DDx+(A+1)=0x+0=0.

Ex. Find the sum and product of f(x) = 4x — 5and g(x) = 2x% — 4x + 2
in Zg[x].

f(x)+g(x) = (4x —5)+ (2x%? —4x + 2)
=2x24+(4—-4x+(2-5)
=2x% -3
= 2x?% + 5in Zg[x].

f(x)g(x) = (4x — 5)(2x% — 4x + 2)
=U4-2)x3 -G - Dx*+4-Dx—5-2)x*+G-4)x—-(5-2)
= 0x3 —0x%+ 0x — 2x% + 4x — 2
(since 10 = 2 (mod 8) and 20 = 4 (mod 8))
= —2x%+4x—2
= 6x° + 4x + 6.



We define R[xl,xz, ...,xn] the ring of polynomials in n indeterminants with

coefficients in R in the usual way.
Ex. What are the units of Zg[x]?

So given an element f(x) = ag + a;x + ayx? + - + a,x"
when is there a g(x) = by + byx + byx?* + -+ + by x™

such that (f (x))(g(x)) =1in Zg[x]?

Notice that Zs € Zs|[x], and Zs is a field (but Zg [x] isn’t a field).

Thus, any non-zero element in Zg has an inverse. So the polynomials

fx)=1, f(x) =2, f(x) =3, and f(x) = 4 are units in Zs[x].

Suppose f(x) = ay + a;x + ayx? + -+~ + a,x™ has an inverse
g(x) = by + byx + byx? + -+« + b, x™ in Zs [ x].

Let’s assume a,, # 0 forsomen > 0 i.e. f(x) is not a constant function,

then f(x)g(x) = co + c1x + X% + +++ + Cpppx ™™

where the highest power of f (x)g(x) is a,b,, where a,, is the coefficient
of the highest power of f(x) (with a non-zero coefficient) and b,, is the
coefficient of the highest power of g(x) (with a non-zero coefficient).

Since a, # 0,a,b,x™ ™, does nothaven + m = 0.
But In order for f(x)g(x) = 1, all coefficients ¢y, Cy, ..., Cj4m Must be 0.

But that would mean a, b,, = 0 and that can’t happen because Zs is a
field and has no O divisors. Thus, the only units of Zz[x] are the constant

functions f(x) =1, f(x) =2, f(x) =3, and f(x) = 4.



If D is an integral domain then so is D[x]. The argument is similar to the one

used in the previous example. If
f(x) =ay+a;x + ax? + -+ a,x™
g(x) = by + byx + byx* + -+ + by x™

then the only way for f(x)g(x) = O (that s, the product is the 0 polynomial) is
for all coefficients of the product f(x)g(x) to be 0.

The coefficient of the highest power of f (x)g(x) is a,b,,, where a,, # 0,
b,, # 0. Thus the only way for a, b,,, = 0 is for there to be 0 divisors in D.

But D is an integral domain so that can’t happen.

If F is a field (and hence an integral domain) F[x] is an integral domain but not a

field since X is not a unit (i.e. thereisno f(x) € F[x] with xf(x) = 1)
However, we can form the field of rational functions from the integral domain

F[x] (as we did earlier) by creating the field of quotients for F[x].

Theorem:
Let F be a subfield of a field E.
Let « € E, and let x be an indeterminant.
The map ¢,: F[x] = E is defined by:
Oy (ag + ajx + ax? + -+ a,x™) = ay + a; (@) + a,a? + -+ a,a”
is a homomorphism of F[x] into E.

In particular, ¢,(x) = @, for all @ € F, maps F isomorphically into E.
The homomorphism ¢, is called the evaluation homomorphism at .



Proof: The fact that ¢, is a homomorphism comes from the definition
of addition and multiplication in F[x].

Iff(x) =ap+a;x+ -+ a,x",
gx) =byg+ bix+ -+ byx™
h(x) =f(x)+9g(x) =co+cyx+ -+ cyx™, wheren = m, then
¢a(f(0) + g(0) = ¢po(h(0)) = co + cra + -+ cpa”

¢a(f(x)) + ¢a(g(x))
=ag+a;a+--+aya”™+ by + bia+ -+ bpa™

By the definition of addition in F[x]|, ¢; = a; + b;, so

¢a(f(x) + g(x)) = ¢a(f(x)) + ¢a(.g(x))-

f(x)gx) =dy+dyx+ -+ dsx®and
qba(f(x)g(x)) = dO + dla + o+ dsas

[$a(f ())][¢a(9(0))]
= (ag +a;a + -+ a,a™)(bg + bya + -+ bya™)

By the definition of multiplication in F[x]:

bo(F(0)g(0)) = [da(f())][¢a(9@))]

If f(x) = ais a constant polynomial in F[x], then ¢, (a) = a.
So ¢, maps the constant functions isomorphically onto F € E.

By the definition of ¢y, ¢, (x) = a.



Ex. Let F = Q, and E = R. Consider ¢p3: Q[x] = R.
ps(ag +a;x+ -+ ax™) =ay+a;(3)+ -+ a,(3)".
Notice that 3 (x> —x —6) =32 -3 -6 = 0.
So x? — x — 6 is in the kernel of ¢5.

What is the kernel of ¢3?

ker(¢3) = {f (x) € Qlx]| f(3) = 0}.

Ex. Let F = Q, and E = C and consider:
Pri(ag +a;x + -+ a,x™) =ay+ a;(20) + -+ a, (20"
where i = —1.
Notice that ¢,; (x% + 4) = (2i)> + 4 = 0.
Sox? + 4 isinthe ker(¢,;) = {f (x) € Q[x]| f(2i) = 0}.

Def. Let F be a subfield of a field E, and let & be an element of E.

let f(x) =ag+a.x+ -+ a,x™ € F[x],andlet ¢p,: F[x] = E
be the evaluation homomorphism.

Let f (@) denote ¢ (f(x)) = ap + a1 + -+ + aza™

If f(a) = 0, then a is a zero of f(x).



Ex. Find all of the zeros of x* + 2x2 + 2x in Z.

Since Z- only has 7 elements we can just evaluate the polynomial for each

value and see where it’s 0 in Z-.

xt+2x% +2x = x(x3 + 2x + 2)

0(03 + 2(0) + 2) = 0 (mod 7)

1(13+2(1) +2)=5% 0 (mod 7)

223 +2(2)+2)=2(8+4+2)=2(14) =0 (mod 7)
333+ 23) +2)=3(127+6+2)=3(35) =0 (mod 7)
4(43 +2(4)+2) = 4(64+ 8+ 2) = 4(74) # 0 (mod 7)
5(53+2(5) +2) =5(125+ 10 + 2) = 5(137) # 0 (mod 7)
6(63 +2(6) +2) =6(216+ 12 + 2) = 6(230) Z 0 (mod 7)
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Sothezerosoccuratx =0, x =2, x = 3.



