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Rings of Polynomials  

 

Let 𝑅 be a ring and let 𝑥 be called an indeterminant (as opposed to a variable). 

Def.  A polynomial 𝑓(𝑥) with coefficients in 𝑅 is any expression of the form: 

 ∑ 𝑎𝑖𝑥𝑖

∞

𝑖=0

= 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 + ⋯ 

where 𝑎𝑖 ∈ 𝑅 and 𝑎𝑖 = 0 for all but a finite number of values of 𝑖. The 

𝑎𝑖 ’s are coefficients of 𝑓(𝑥). The largest 𝑖 for which 𝑎𝑖 ≠ 0 is called the 

degree of the polynomial. If for all 𝑖, 𝑎𝑖 = 0, then we say the degree of 

𝑓(𝑥) is undefined. 

 

Let 𝑅[𝑥] = {set of polynomials, 𝑓(𝑥), with coefficients in 𝑅}. 

Notice that 𝑅[𝑥] is also a ring where addition and multiplication is defined in the 

usual way: 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 + ⋯ 

                         𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 + ⋯  

 

Then,  𝑓(𝑥) + 𝑔(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛 + ⋯,  

                                  where 𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖 

and            𝑓(𝑥)𝑔(𝑥) = 𝑑0 + 𝑑1𝑥 + 𝑑2𝑥2 + ⋯ + 𝑑𝑛𝑥𝑛 + ⋯ 

                                        where  𝑑𝑖 = ∑ 𝑎𝑗
𝑖
𝑗=0 𝑏(𝑖−𝑗).  

Notice that if 𝑅 is not commutative then neither is 𝑅[𝑥]. If 𝑅 is commutative 

then so is 𝑅[𝑥]. 

The additive identity element for 𝑅[𝑥] is 𝑓(𝑥) = 0 and the multiplicative 

identity element is 𝑔(𝑥) = 1.  
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Showing that 𝑅[𝑥], + is an abelian group and that 𝑅[𝑥] satisfies multiplicative 

associativity and the distributive laws is messy but straight forward. 

 

Ex.  Let ℤ2[𝑥] = 𝑅[𝑥]. Calculate (𝑥 + 1)2 and (𝑥 + 1) + (𝑥 + 1).  

 

        (𝑥 + 1)2 = (𝑥 + 1)(𝑥 + 1) = 𝑥2 + (1 + 1)𝑥 + 1 = 𝑥2 + 1 

(𝑥 + 1) + (𝑥 + 1) = (1 + 1)𝑥 + (1 + 1) = 0𝑥 + 0 = 0. 

 

Ex.   Find the sum and product of 𝑓(𝑥) = 4𝑥 − 5 and 𝑔(𝑥) = 2𝑥2 − 4𝑥 + 2   

       in ℤ8[𝑥].  

 

𝑓(𝑥) + 𝑔(𝑥) = (4𝑥 − 5) + (2𝑥2 − 4𝑥 + 2) 

                        = 2𝑥2 + (4 − 4)𝑥 + (2 − 5)   

                        = 2𝑥2 − 3 

                        = 2𝑥2 + 5 in ℤ8[𝑥].  

 

𝑓(𝑥)𝑔(𝑥) = (4𝑥 − 5)(2𝑥2 − 4𝑥 + 2) 

          = (4 ∙ 2)𝑥3 − (4 ∙ 4)𝑥2 + (4 ∙ 2)𝑥 − (5 ∙ 2)𝑥2 + (5 ∙ 4)𝑥 − (5 ∙ 2) 

          = 0𝑥3 − 0𝑥2 + 0𝑥 − 2𝑥2 + 4𝑥 − 2 

(since 10 ≡ 2 (𝑚𝑜𝑑 8) and 20 ≡ 4 (𝑚𝑜𝑑 8)) 

 = −2𝑥2 + 4𝑥 − 2 

 = 6𝑥2 + 4𝑥 + 6. 
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We define 𝑅[𝑥1, 𝑥2, … , 𝑥𝑛] the ring of polynomials in 𝑛 indeterminants with 

coefficients in 𝑅 in the usual way.  

 

Ex.     What are the units of ℤ5[𝑥]?  

 

So given an element 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 

when is there a          𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ + 𝑏𝑚𝑥𝑚 

such that (𝑓(𝑥))(𝑔(𝑥)) =1 in ℤ5[𝑥]?  

 

Notice that ℤ5 ⊆ ℤ5[𝑥], and ℤ5 is a field (but ℤ5[𝑥] isn’t a field). 

Thus, any non-zero element in ℤ5 has an inverse. So the polynomials 

          𝑓(𝑥) = 1, 𝑓(𝑥) = 2, 𝑓(𝑥) = 3,  and 𝑓(𝑥) = 4 are units in ℤ5[𝑥]. 

 

           Suppose 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 has an inverse 

                        𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ + 𝑏𝑚𝑥𝑚 in ℤ5[𝑥].   

  

          Let’s assume 𝑎𝑛 ≠ 0 for some 𝑛 > 0  i.e. 𝑓(𝑥) is not a constant function, 

          then 𝑓(𝑥)𝑔(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛+𝑚𝑥(𝑛+𝑚)                             

          where the highest power of 𝑓(𝑥)𝑔(𝑥) is 𝑎𝑛𝑏𝑚 where 𝑎𝑛 is the coefficient 

          of the highest power of 𝑓(𝑥) (with a non-zero coefficient) and 𝑏𝑚 is the 

          coefficient of the highest power of 𝑔(𝑥) (with a non-zero coefficient). 

        Since  𝑎𝑛 ≠ 0 , 𝑎𝑛𝑏𝑚𝑥𝑛+𝑚, does not have 𝑛 + 𝑚 = 0.   
       But In order for 𝑓(𝑥)𝑔(𝑥) = 1, all coefficients 𝑐1, 𝑐2, … , 𝑐𝑛+𝑚 must be 0. 

         But that would mean 𝑎𝑛𝑏𝑚 = 0 and that can’t happen because ℤ5 is a 

         field and has no 0 divisors. Thus, the only units of ℤ5[𝑥] are the constant 

         functions 𝑓(𝑥) = 1, 𝑓(𝑥) = 2, 𝑓(𝑥) = 3,  and 𝑓(𝑥) = 4. 



4 
 

If 𝐷 is an integral domain then so is 𝐷[𝑥].  The argument is similar to the one 

used in the previous example.  If 

                      𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛  

                      𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ + 𝑏𝑚𝑥𝑚 

then the only way for 𝑓(𝑥)𝑔(𝑥) = 0 (that is, the product is the 0 polynomial) is 

for all coefficients of the product 𝑓(𝑥)𝑔(𝑥) to be 0.   

The coefficient of the highest power of 𝑓(𝑥)𝑔(𝑥) is 𝑎𝑛𝑏𝑚, where 𝑎𝑛 ≠ 0,  

 𝑏𝑚 ≠ 0. Thus the only way for 𝑎𝑛𝑏𝑚 = 0 is for there to be 0 divisors in 𝐷.  

 But 𝐷 is an integral domain so that can’t happen. 

 

If 𝐹 is a field (and hence an integral domain) 𝐹[𝑥] is an integral domain but not a 

field since 𝑥 is not a unit (i.e. there is no 𝑓(𝑥) ∈ 𝐹[𝑥] with 𝑥𝑓(𝑥) = 1) 
However, we can form the field of rational functions from the integral domain 

𝐹[𝑥] (as we did earlier) by creating the field of quotients for 𝐹[𝑥]. 

 

Theorem: 

Let 𝐹 be a subfield of a field 𝐸.  

Let 𝛼 ∈ 𝐸, and let 𝑥 be an indeterminant. 

The map 𝜙𝛼: 𝐹[𝑥] → 𝐸 is defined by: 

𝜙𝛼(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛) = 𝑎0 + 𝑎1(𝛼) + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛   

          is a homomorphism of 𝐹[𝑥] into 𝐸.  

          In particular, 𝜙𝛼(𝑥) = 𝛼, for all 𝛼 ∈ 𝐹, maps 𝐹 isomorphically into 𝐸. 

          The homomorphism 𝜙𝛼 is called the evaluation homomorphism at 𝛼. 
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Proof:   The fact that 𝜙𝛼  is a homomorphism comes from the definition       

               of addition and multiplication in 𝐹[𝑥]. 

 

     If 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛,     

       𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑚𝑥𝑚 

        ℎ(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) = 𝑐0 + 𝑐1𝑥 + ⋯ + 𝑐𝑛𝑥𝑛,    where 𝑛 ≥ 𝑚, then 

             𝜙𝛼(𝑓(𝑥) + 𝑔(𝑥)) = 𝜙𝛼(ℎ(𝑥)) = 𝑐0 + 𝑐1𝛼 + ⋯ + 𝑐𝑛𝛼𝑛  

     𝜙𝛼(𝑓(𝑥)) + 𝜙𝛼(𝑔(𝑥))

= 𝑎0 + 𝑎1𝛼 + ⋯ + 𝑎𝑛𝛼𝑛 + 𝑏0 + 𝑏1𝛼 + ⋯ + 𝑏𝑚𝛼𝑚 

            

 By the definition of addition in 𝐹[𝑥], 𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖, so 

                       𝜙𝛼(𝑓(𝑥) + 𝑔(𝑥)) = 𝜙𝛼(𝑓(𝑥)) + 𝜙𝛼(𝑔(𝑥)).   

 

𝑓(𝑥)𝑔(𝑥) = 𝑑0 + 𝑑1𝑥 + ⋯ + 𝑑𝑠𝑥𝑠 and  

𝜙𝛼(𝑓(𝑥)𝑔(𝑥)) = 𝑑0 + 𝑑1𝛼 + ⋯ + 𝑑𝑠𝛼𝑠 

[𝜙𝛼(𝑓(𝑥))][𝜙𝛼(𝑔(𝑥))]

= (𝑎0 + 𝑎1𝛼 + ⋯ + 𝑎𝑛𝛼𝑛)(𝑏0 + 𝑏1𝛼 + ⋯ + 𝑏𝑚𝛼𝑚) 

 

            By the definition of multiplication in 𝐹[𝑥]: 

𝜙𝛼(𝑓(𝑥)𝑔(𝑥)) = [𝜙𝛼(𝑓(𝑥))][𝜙𝛼(𝑔(𝑥))]. 

 

If 𝑓(𝑥) = 𝑎 is a constant polynomial in 𝐹[𝑥], then 𝜙𝛼(𝑎) = 𝑎.  

So 𝜙𝛼 maps the constant functions isomorphically onto 𝐹 ⊆ 𝐸. 

By the definition of 𝜙𝛼 ,   𝜙𝛼(𝑥) = 𝛼. 
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Ex.  Let 𝐹 = ℚ, and 𝐸 = ℝ. Consider 𝜙3: ℚ[𝑥] → ℝ. 

𝜙3(𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛) = 𝑎0 + 𝑎1(3) + ⋯ + 𝑎𝑛(3)𝑛. 

 Notice that 𝜙3(𝑥2 − 𝑥 − 6) = 32 − 3 − 6 = 0. 

 So 𝑥2 − 𝑥 − 6 is in the kernel of 𝜙3. 

 What is the kernel of 𝜙3? 

 

         ker(𝜙3) = {𝑓(𝑥) ∈ ℚ[𝑥]| 𝑓(3) = 0}. 

 

Ex.  Let 𝐹 = ℚ, and 𝐸 = ℂ and consider: 

𝜙2𝑖(𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛) = 𝑎0 + 𝑎1(2𝑖) + ⋯ + 𝑎𝑛(2𝑖)𝑛 

          where 𝑖2 = −1. 

 Notice that 𝜙2𝑖(𝑥2 + 4) = (2𝑖)2 + 4 = 0. 

 So 𝑥2 + 4 is in the ker(𝜙2𝑖) = {𝑓(𝑥) ∈ ℚ[𝑥]| 𝑓(2𝑖) = 0}. 

 

 

Def.   Let 𝐹 be a subfield of a field 𝐸, and let 𝛼 be an element of 𝐸. 

Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ 𝐹[𝑥], and let 𝜙𝛼 : 𝐹[𝑥] → 𝐸 
 be the evaluation homomorphism.  

Let 𝑓(𝛼) denote 𝜙𝛼 (𝑓(𝑥)) = 𝑎0 + 𝑎1𝛼 + ⋯ + 𝑎𝑛𝛼𝑛. 

If 𝑓(𝛼) = 0, then 𝛼 is a zero of 𝑓(𝑥). 
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Ex.     Find all of the zeros of 𝑥4 + 2𝑥2 + 2𝑥 in ℤ7. 

 

 Since ℤ7 only has 7 elements we can just evaluate the polynomial for each 

            value and see where it’s 0 in ℤ7. 

𝒙 𝒙𝟒 + 𝟐𝒙𝟐 + 𝟐𝒙 = 𝒙(𝒙𝟑 + 𝟐𝒙 + 𝟐) 

0  0(03 + 2(0) + 2) ≡ 0 (𝑚𝑜𝑑 7) 
1  1(13 + 2(1) + 2) ≡ 5 ≢ 0 (𝑚𝑜𝑑 7) 
2  2(23 + 2(2) + 2) ≡ 2(8 + 4 + 2) ≡ 2(14) ≡ 0 (𝑚𝑜𝑑 7) 
3  3(33 + 2(3) + 2) ≡ 3(27 + 6 + 2) ≡ 3(35) ≡ 0 (𝑚𝑜𝑑 7) 
4  4(43 + 2(4) + 2) ≡ 4(64 + 8 + 2) ≡ 4(74) ≢ 0 (𝑚𝑜𝑑 7) 
5 5(53 + 2(5) + 2) ≡ 5(125 + 10 + 2) ≡ 5(137) ≢ 0 (𝑚𝑜𝑑 7) 
6 6(63 + 2(6) + 2) ≡ 6(216 + 12 + 2) ≡ 6(230) ≢ 0 (𝑚𝑜𝑑 7) 

  

 So the zeros occur at 𝑥 = 0, 𝑥 = 2, 𝑥 = 3. 

 

 

 


