Fermat’s Little Theorem and Euler’s Theorem

Theorem: In any field, I, the non-zero elements, U, form a group under the
field multiplication.

Proof:

0. U is closed under multiplication since if x, y € U, then by definition x # 0
and y # 0. Butthen xy # 0 otherwise F would have zero divisors. So
xy e U.

1. The multiplication in F is associative since F is also a ring.
2. Theidentity element 1 € F is in U since it’s non-zero.

3. If x € U then by definition x is a unit and has a non-zero inverse which is also

inU.

Hence, U is a group under the field multiplication.

In particular, the non-zero elements of Zp, p being a prime number, form a
group. Thus, {1, 2, ...,p — 1} is a group of order p — 1 under multiplication

modulo p.

Since the order of any element of the group must divide the order of the group, if
a # 0,a € Z, then a1 =1in L.

Since Zp is isomorphic to the group of cosets:
{pZ, 1+ pZ, 2+ pZ,.. (p—1)+pZ}.

This gives us: aP~1 = 1 (mod p).

Note: the notation a1 = 1 (mod p) read as "aP~1 is congruent to 1 modulo
p”, is often used in place of aP~1 = 1 (mod p).



Thus we have:

Little Theorem of Fermat: If @ € Z and p is prime not dividing a, then p
divides aP?~1 — 1, thatis, a?~1 = 1 (mod p) fora # 0 (mod p).

Corollary: If a € Z, then a? = a (mod p) for any prime p.

Proof: If a 0 (mod p) then this follows from the previous theorem.

If a = 0 (mod p) then both sides are 0 modulo p.

Ex. Find the remainder of 81°0 when divided by 13, i.e. find 81°° (mod 13).

We know by the The Little Theorem of Fermat that when p = 13 and
a = 8 we have: g13-1 = 812 =1 (/mod 13).

Thus:  (8'2)? = 1 (mod 13) for any integer b.
Write:

8100 —

= (8'%)%(8*) = (1H°(8Y)

=8* = (-5)*

= (=25)2(=25)2 = (25)2(25)?
= (-1)?(=1)? = 1 (mod 13).



Ex. Show 22923 + 1 is not divisible by 11 (i.e. 22923 + 1 % 0 (mod 11)).

By Fermat’s Theorem we know:

ifa=2andp =11, 21° =1 (mod 11).

22023 + 1= ((210)202 . 23) + 1
= [(1292) (2%)] +1
=8+ 1=9(mod 11).

Thus the remainder when dividing 22°%3 + 1 by 11 is 9 and not 0.

Theorem: The set H,, of non-zero elements of Z,, that are not zero
divisors form a group under multiplication modulo n.

Def. Letn € Z* and let (1) be the number of positive integers relatively
prime to n. Note: @(1) = 1.

Ex. Letn = 18 find @ (n).

(p(n) is the number of positive integers relatively prime to 18.

The positive integers relatively prime to 18 are:
1,5,7,11,13,17.

So ¢(18) = 6.



By an earlier theorem, @ (1) is the number of non-zero elements of Z,,

that are not zero divisors.

Def. The function @: Z* — Z7 is called the Euler Phi Function.

Euler’'s Theorem: If a is an integer relatively prime to n, then a®?™ —1s
divisible by 1, thatis a®™ = 1 (mod n).

Proof: If a is relatively prime to n, then the coset a + nZ of nZ
containing a contains an integer b < n and relatively prime to n.

Using the fact that multiplication of cosets by multiplication modulo n
of representatives is well defined, we have: a?™ = b?™ (mod n).

If H,, is the group of non-zero elements in Z,, that are not 0 divisors

then |Hy,| = @(n), thus b?™ = 1(mod n).

Note: if n = p, then @(n) = n — 1, thus we get Fermat’s Theorem:

aP~1 =1 (mod p).



Ex. Show that 11® — 1 is divisible by 18 using Euler's theorem.

Let n = 18. Then as we saw earlier, ¢ (18) = 6.

If we take any integer that is relatively prime to 18, 11 for example,
then by Euler's theorem, 11° = 1 (mod 18).

= 11°—1 =0 (mod 18) = 11° — 1 s divisible by 18.

Of course it’s easy enough to compute 11° in Z;g by:
11%2 = 121 (mod 18) = 13 (mod 18)
11* = (11?)(11?) (mod 18) = 132 (mod 18) = 7 (mod 18)
116 = 11%- 112 (mod 18) = (7 - 13) (mod 18)
= 1(mod 18).

Ex. Find 29%%98 (mod 18).

18 and 29 are relatively prime so by Euler’s theorem
299(18) = 296 = 1 (mod 18).
Thus we have:
296008 = (296)1001(292) (mod 18)

= (1)1991(292) (mod 18)
= (11%) (mod 18) since 29 = 11 (mod 18)
= (121) (mod 18)
= 13 (mod 18).



Solving ax = b (mod n)

Theorem: Let m be a positive integer and let a € Z,, be relative prime to n.
For each b € Z,, the equation ax = b has a unique solution in Z,,.

Proof: aisaunitinZ, soa”!(ax) = a~1b.

x = a~1b is the only solution.

Corollary: If a and m are relatively prime integers, then for any integer b,
ax = b (mod n) has as solutions all integers in precisely
one residue class modulo n.

Theorem: Let n be a positive integer and let a, b € Z,,. Letd = GCD(a,n).
The equation ax = b has a solution in Z,, if, and only if, d divides b.
When d divides b, the equation has exactly d solutions in Z,,.

Proof: First let’s show ax = b in Z,, has no solutions unless d divides b.

Suppose S € Z,, is a solution.
Thenas — b =qninZso, b = as — gn.
Since d divides both a and n, d must divide as — qn = b.

Thus a solution S can exist only if d divides b.



Suppose that d does divide b.

leta = a;d, b = b;d,andn = n,d.

Then the equation as — b = gn in Z can be written:
a,ds — b;d = qn,d
d(a;s — by) = d(qny).

So (as — b) is a multiple of 1 if, and only if, a; s — by is a multiple of n;.
Thus, the solutions s of ax = b in Z,, are precisely the solutions of
ayx = by inZy,.

Now let s € Zjy, be the unique solution of a;x = by in Z,

(since aq is relatively prime to 14, there is a unique solution by the

previous theorem).

The numbers in Z,, that reduce to s (mod n,) are those given by:
s, S+n,;, s+2n;, s+n,.., s+ (- 1)n,.

Thus there are exactly d solutions.

Corollary: Letd = GCD(a,n), a,n € Z*. The congruence
ax = b (mod n) has a solution if, and only if, d divides b. When
this is the case, the solutions are the integers in exactly d distinct
residue classes modulo n.



Ex. Find all solutions of 155x = 16 (mod 65).

GCD(155,65) = 5 and 5 does not divide 16 so there are no
solutions in Zgs.

Ex. Find all integer solutions of 155x = 75 (mod 65).

GCD(155,65) = 5 and 5 does divide 75 so there are 5 solutions in
Zes.

Start by dividing the equation and the 65 by 5.
31x = 15 (mod 13)
also 15 (mod 13) = 2 (mod13)
so 31x = 2 (mod 13).

now 13x = 0 (mod 13) (forany x € Z)
Sosolve: (31 mod 13)x = 2 (mod 13)
5x = 2 (mod 13).

The multiplicative inverse of 5 in Z 5 is 8 because:

(8)(5) (mod 13) = 40 (mod 13) = 1 (mod 13).

So, 8(5x) = 8(2) (mod 13)
x = 16 (mod 13)
x = 3 (mod 13).



So3+65Z ={...,—127,—-62,3,68,133, ... } are all solutions of
155x = 75 (mod 65).

The other integer solutions are gotten by:

(3 + (6—55)) +65Z = 16 + 65Z = {..., —144,—49,16,81, ...}

. ) + 65Z = 29 + 65Z = {...,—101,-36, 29,94, ...}
) + 65Z = 42 + 65Z = {...,—88,—-23,42,107, ...}

(3 +4 (6—55)) +65Z =55 + 65Z = {...,—75,—10,55,120, ... }.

The 5 solutions in Zgs are 3,16,29,42, and 55.

Ex. Find all solutions in Z to 20x = 28 (mod 32).

In this case a = 20, b = 28, and m = 32.

d = GCD(20,32) = 4 and 4 divides 28, so there are 4 cosets in the

solution.
Start by dividing the equation and the 32 by 4:
20x = 28 (mod 32)
5x = 7 (mod 8).



10

The multiplicative inverse of 5 in Zg is 5 so multiply the equation by 5:
(5)5x = (5)7 (mod 8)
x = 35 (mod 8)
x = 3 (mod 8).

So3+ 32Z ={...,—61,—-29,3,35,67, ... } are all solutions of
20x = 28 (mod 32).

The other integer solutions are given by:

m

3+ E +32Z=3+8+32Z=11+32Z={...,—53,—-21,11,43,75, ...}
2m

3+—+32Z=3+16+32Z=19+32Z={...,—45,-13,19,51,83, ...}

d

3m
3+ a +32Z =3+24+32Z=27+32Z={...,—37,-5,27,59,91, ... }.

The 4 solutions in Z3, are given by {3,11,19, 27}.



