Rings and Fields

Def. Aring (R, +, -) is aset R with two binary operations + and -, called

addition and multiplication, defined on R such that the following axioms are
satisfied.

1) (R, +) is an abelian group
2) Multiplication is associative: a * (b - ¢) = (a* b) - ¢ (and R is closed
under multiplication).
3) Forall a,b,c € R, the left and right distributive laws hold:
a-(b+c)=(@@-b)+(a-c)
(b+c)-a=((b-a)+ (c-a)

Ex. Any subset of C that is a group under + is a ring under the usual addition
and multiplication. Thus (C, +, *), (R, +, -), (Q,+, *), and(Z, +, -) are
rings. We will refer to these rings as C, R, Q, and Z where the usual addition
and multiplication are understood.

Ex. Let R be anyringand let M,,(R) be the set of all n X n matrices

having elements of R as entries. M;, (R) is a ring with the usual
addition and multiplication of matrices. We can see this because:

1) M,,(R) is an abelian group under addition
2) Matrix multiplication is associative (and M, (R) is closed under multiplication)
3) Matrix addition and multiplication are distributive:
A-(B+C)=(A-B)+(A-0C)
(B+C)-A=(B-A)+(C-A).

In particular M,,(C), M,,(R), M,,(Q), and M,,(Z) are rings.

Notice in this example + is commutative (which is required by the
definition of a ring) but matrix multiplication is not commutative for
n = 2. Aring where * is commutative is called a commutative ring.



Ex. Show F, the set of all functions f: R = IR, is a ring with the usual addition

and multiplication of functions.

Define multiplication on F by: (f - g)(x) = f(x)g(x).
With the definitions of + and -, F is a ring since:

1) We know (F, +) is an abelian group under the usual addition of
functions: (f + g)(x) = f(x) + g(x).

2)((f-9)-h)) =(f- @) -h(x) = f(x) - g(x) - h(x)
(f-(g-M)=f)-(g M = f(x) gx)-hx)

and F is closed under multiplication.

3)F+ (g + W@ = FE(900) +h(0) = FEGE) + FORE)
=fg+fh

(9+ ) F() = (900 + h(0)) - F(x) = g () + hCOF ()
=g f+hf.

Notice that if we defined multiplication as composition of functions:
i.e. f-g=(f°g)(x),F would not be a ring since this multiplication is not

distributive. For example, let f(x) = x2, g(x) = x, h(x) = x.
folg+h) =feo(2x)=(2x)* = 4x?
fog+foh=x?+x*=2x?

So fo(g+h)# fog+foh.



Ex. Showthat nZ = {x € Z| x = ny for y € Z} is aring.

nZ = {x € Z| x = ny for y € Z} is an abelian group under the usual
addition.

nZ. is also closed under the usual multiplication since X, Yy € nZ means
x=na, y=nbforalla,b € Z,soxy = (na)(nb) = n(anb). Since
anb € Z, xy € nZ.

The usual multiplication in Z is closed, associative and satisfies the left and right
distributive laws. Thus, these also work in nZ.

Thus, nZ is a ring.

Ex. (Z,,+) is an abelian group. If we define a - b = (ab) (mod n), Z, is
a ring (we will show this later).
For example, in Zy5, 7 -8 = (7(8)) (mod 12)
=56 (mod 12)
= 8.

Notice that this is a little “weird”. Inagroupif @ - b = b then a is the identity
element. That’s not the case, in general, for rings.

Ex. IfR{,R,, ..., R, arerings, we canform R; X R, X ... X R,, of all
ordered n-tuples (14,7, ..., 1), Wwhere 1; € R;. We define addition
and multiplication of n-tuples by component (as we did with groups). Since
each component satisfies the ring axioms, so does the direct product
R{ X R, X ..X R,,.Thus Ry X R, X ... X R, isaring and is called the

direct product of rings R;.



We willwriten-a = a + a + --- + a, n-times. Note this is not
necessarily the multiplication in the R. For example, if R = M, (R)
and A € R,then34A = A + A + A. Infact, 34 wouldn’t even make
sense for matrix multiplication (at least as written) because 3 is not a
2 X 2 matrix.

Ifn < 0,aninteger,n-a = (—a) + (—a) + (—a) + - + (—a).

We define 0 - a = 0, where the 0 on the left hand sideis 0 € Z, and

0 on the right hand side is the 0 € R (which might not be a number. For
example, It could be a matrix or a function).

Theorem: If R is a ring with additive identity O, then forany a, b € R:

1) 0a = a0 = 0.
2) a(—=b) = (—a)b = —(ab).
3) (—a)(—=b) = ab.

Def. Forrings R and R’, amap ¢p: R = R’ is a ring homomorphism if for all
ab €R.

1) ¢(a+b)=¢a)+¢(b)
2) ¢(ab) = ¢(a)p(b).

Note: Since ¢ is also a group homomorphism of (R, +) to (R’, +") all of the

properties of group homomorphism hold. In particular, ¢ is 1-1 if, and only

if, ker = {a € R| ¢p(a) = 0'}is {0} € R.



Ex. LetF be the ring of all functions f: R = RR. For every a € R we have
the evaluation homomorphism ¢,: F = R by ¢,(f) = f(a).

do(f +9) = +9)(a) =f(a) +g(a) = P.(f) + da(9).
da(fg9) = (fg)(a) = f(a)g(a) = ¢, (f)Pa(g).

This homomorphism is important because finding a root of an equation is
the same as finding p € R (or C) such that

¢p(f) = f(p) = 0.

So f is in the kernel of ¢b,,.

Ex. Showthat ¢:7Z — Z, where ¢(z) = z (mod n) isaring
homomorphism for each positive integer n.

From group theory we know:
¢z +w) = ¢(2) + dp(w).
To show ¢p(zw) = ¢p(2)p (W) write:

Z=qn+r andw = ¢gyn+ 1, where0 <7y, 1, < n.
zw = (qn + 1)(qen + 13) = n(q1qz2n + 1192 + 12q1) + 1171y

Thus, p(zw) = r 1, (mod n).
Butsince 0 <7y, 1p, < N

1 =¢(2) and 1, = p(W) = p(z2w) = p(2)p(w).

Note: From group theory we know the factor group Z/nZ. is isomorphic to Z,, .

The same will turn out to be true for Z/nZ as a factor ring.



Def: Anisomorphism ¢»: R — R from aring R toaring R’ is aring
homomorphism thatis 1-1 and onto.

Not every group isomorphism (or homomorphism) is a ring isomorphism (or
homomorphism).

Ex. Prove that the rings Z and 5Z are not isomorphic (although they are
isomorphic as groups under addition by ¢p: Z — 57, ¢(x) = 5x).

Assume ¢: Z — 57 is a ring isomorphism.
Then, ¢(a + b) = ¢(a) + ¢(b) and ¢p(ab) = p(a)p(b).
Then  ¢(2a) = ¢(a) + ¢(a) = 2¢(a).
But  ¢(2a) = ¢(2)p(a)
= ¢(2) =2
But 2 € 57, thus ¢ cannot be an isomorphism.
For example, if a = 3 and ¢p(x) = 5x:
$p(6) =p(3+3)=¢pB)+¢$(3)=15+15=30
$p(6) =¢p(2-3)=¢(2)' $(3) =10+ 15 = 150.

which is a contradiction, so ¢ is not a ring isomorphism.



Fields

Many rings have a multiplicative identity element. For example, 1 is the
multiplicative identity element (i.e. 1 - x = x forall x € R) for therings C, R,
Q, and Z. But 2Z. is a ring and it doesn’t have a multiplicative identity element.

Def. A ring with a multiplicative identity element is a ring with unity. We will call
this multiplicative identity element 1 (although it could be a matrix or
function).

Ex. IfGCD(q,r) = 1 for positive integers g and 7, show that the rings
Lqr and Zg X Z, are isomorphic.

Additively, qu and Zq X 7., are both cyclic abelian groups of order qr.
1 is a generator for Zg, and (1, 1) is a generator for Z, X Zj.

ifwelet ¢:Zg, = Zy X Ly by p(n - 1) = n - (1, 1) thisis an additive

group isomorphism since ¢ clearly 1-1, onto, and
pn+m)=mn+m)(1,1)
=n(1,1) +m(1,1)
= ¢(n) + p(m).

1 is the multiplicative unity in Zg,- and (1, 1) is the multiplicative unity in
Lq X ZLy. So:

¢(nm) = nm(1,1) = [n(1, D] - [m(1, D] = p(m)p(m).



Note: a direct product R; X R, X ... X R,, of rings is commutative or has unity

if, and only if, each R; is commutative or has unity.

Def. Let R be a ring with unity 1 # 0. An element u in R is a unit of R if it has
a multiplicative inverse in R. If every non-zero element of R is a unit, then

R is a division ring (or skew field). A field is a commutative division ring. A
non-commutative division ring is called a “strictly skew field.”

Ex.  Find the units of Zg.

a € Zg is a unit of Zg if there exists a b € Zg such that
ab = (ab) (mod 6) = 1.

lisaunitsincel-1=1.

No even number can be a unit in Zg because if a is even, then ab € Z is
even (if b is an integer) so ab (mod 6) # 1. Thus, 2 and 4 are not units.

(3)(2) (mod 6) =0, (3)(3) (mod 6) = 3,
(3)(4) (mod 6) =0, (3)(5) (mod 6) = 3.

So 3 is not a unit.

(5)(5) (mod 6) = 1 so0 5 isits own inverse and 5 is a unit.

Thus, 1 and 5 are the only units in Zg. Thus, Zg is not a field. We will see
later that the only units in Z,, are m € Z,, such that GCD(m,n) = 1.



Ex. Show that Zs is a field.

Z is a commutative ringand 1,2 (2 -2 =1 (mmod 3)) are units.

In fact, Zp, where p is a prime number, is a field because
GCD(m,p) = 1 where pis primeand misaninteger 1 < m < p, so

all elements except O are units.

Ex. Z isnot a field because 3, in particular, has no multiplicative inverse

(neither do any other elements of Z except 1 and —1).

Analogous to subgroups, a subring R’ of a ring R is a subset of R and is a ring
under + and - defined on R. A subfield K’ of a field K is a subset of K and is a

field under + and - defined on K.



