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                                            Rings and Fields 

Def.  A ring  (𝑅, +, ∙) is a set 𝑅 with two binary operations  + and  ∙ , called 

addition and multiplication, defined on 𝑅 such that the following axioms are 

satisfied. 

1) (𝑅, +) is an abelian group 

2) Multiplication is associative: 𝑎 ∙ (𝑏 ∙ 𝑐) = (𝑎 ∙ 𝑏) ∙ 𝑐 (and 𝑅 is closed 

under multiplication). 

3) For all  𝑎, 𝑏, 𝑐 ∈ 𝑅, the left and right distributive laws hold: 

𝑎 ∙ (𝑏 + 𝑐) = (𝑎 ∙ 𝑏) + (𝑎 ∙ 𝑐) 
(𝑏 + 𝑐) ∙ 𝑎 = (𝑏 ∙ 𝑎) + (𝑐 ∙ 𝑎) 

 

Ex.    Any subset of ℂ that is a group under + is a ring under the usual addition 

and multiplication. Thus (ℂ, +, ∙), (ℝ, +, ∙), (ℚ, +, ∙), and (ℤ, +, ∙) are 

rings. We will refer to these rings as ℂ, ℝ, ℚ, and ℤ where the usual addition 

and multiplication are understood. 

 

Ex.      Let 𝑅 be any ring and let 𝑀𝑛(𝑅) be the set of all 𝑛 × 𝑛 matrices 

 having elements of 𝑅 as entries. 𝑀𝑛(𝑅) is a ring with the usual 

 addition and multiplication of matrices. We can see this because: 

1) 𝑀𝑛(𝑅) is an abelian group under addition 

2) Matrix multiplication is associative (and 𝑀𝑛(𝑅) is closed under multiplication) 

3) Matrix addition and multiplication are distributive: 

𝐴 ∙ (𝐵 + 𝐶) = (𝐴 ∙ 𝐵) + (𝐴 ∙ 𝐶) 
(𝐵 + 𝐶) ∙ 𝐴 = (𝐵 ∙ 𝐴) + (𝐶 ∙ 𝐴).  

 

In particular 𝑀𝑛(ℂ), 𝑀𝑛(ℝ), 𝑀𝑛(ℚ), and 𝑀𝑛(ℤ) are rings. 

 Notice in this example + is commutative (which is required by the 
 definition of a ring) but matrix multiplication is not commutative for 

          𝑛 ≥ 2. A ring where ∙ is commutative is called a commutative ring.  
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Ex.  Show 𝐹, the set of all functions 𝑓: ℝ → ℝ, is a ring with the usual addition 

        and multiplication of functions.   

 

Define multiplication on 𝐹 by: (𝑓 ∙ 𝑔)(𝑥) = 𝑓(𝑥)𝑔(𝑥). 

With the definitions of + and ∙ , 𝐹 is a ring since: 

 1)  We know (𝐹, +) is an abelian group under the usual addition of 

 functions: (𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥).   

 

2) ((𝑓 ∙ 𝑔) ∙ ℎ)(𝑥) = (𝑓 ∙ 𝑔)(𝑥) ∙ ℎ(𝑥) = 𝑓(𝑥) ∙ 𝑔(𝑥) ∙ ℎ(𝑥) 

     (𝑓 ∙ (𝑔 ∙ ℎ)) = 𝑓(𝑥) ∙ (𝑔 ∙ ℎ)(𝑥) =  𝑓(𝑥) ∙ 𝑔(𝑥) ∙ ℎ(𝑥) 

      and 𝐹 is closed under multiplication.  

 

3) 𝑓 ∙ (𝑔 + ℎ)(𝑥) = 𝑓(𝑥)(𝑔(𝑥) + ℎ(𝑥)) = 𝑓(𝑥)𝑔(𝑥) + 𝑓(𝑥)ℎ(𝑥) 

            = 𝑓 ∙ 𝑔 + 𝑓 ∙ ℎ 

  (𝑔 + ℎ) ∙ 𝑓(𝑥) = (𝑔(𝑥) + ℎ(𝑥)) ∙ 𝑓(𝑥) = 𝑔(𝑥)𝑓(𝑥) + ℎ(𝑥)𝑓(𝑥) 

                                                                    = 𝑔 ∙ 𝑓 + ℎ ∙ 𝑓. 

 

Notice that if we defined multiplication as composition of functions:                      

i.e.  𝑓 ∙ 𝑔 = (𝑓 ∘ 𝑔)(𝑥), 𝐹 would not be a ring since this multiplication is not 

distributive. For example, let 𝑓(𝑥) = 𝑥2,    𝑔(𝑥) = 𝑥,   ℎ(𝑥) = 𝑥. 

 𝑓 ∘ (𝑔 + ℎ) = 𝑓 ∘ (2𝑥) = (2𝑥)2 = 4𝑥2 

 𝑓 ∘ 𝑔 + 𝑓 ∘ ℎ = 𝑥2 + 𝑥2 = 2𝑥2  

 

So 𝑓 ∘ (𝑔 + ℎ) ≠  𝑓 ∘ 𝑔 + 𝑓 ∘ ℎ. 



3 
 

Ex.  Show that  𝑛ℤ = {𝑥 ∈ ℤ| 𝑥 = 𝑛𝑦 for 𝑦 ∈ ℤ} is a ring.   

 

𝑛ℤ = {𝑥 ∈ ℤ| 𝑥 = 𝑛𝑦 for 𝑦 ∈ ℤ} is an abelian group under the usual 

addition.   

𝑛ℤ is also closed under the usual multiplication since 𝑥, 𝑦 ∈ 𝑛ℤ means             

𝑥 = 𝑛𝑎,   𝑦 = 𝑛𝑏 for all 𝑎, 𝑏 ∈ ℤ, so 𝑥𝑦 = (𝑛𝑎)(𝑛𝑏) = 𝑛(𝑎𝑛𝑏). Since 

𝑎𝑛𝑏 ∈ ℤ, 𝑥𝑦 ∈ 𝑛ℤ. 

The usual multiplication in ℤ is closed, associative and satisfies the left and right 

distributive laws. Thus, these also work in 𝑛ℤ. 

Thus, 𝑛ℤ is a ring.  

 

Ex.  (ℤ𝑛, +) is an abelian group. If we define 𝑎 ∙ 𝑏 = (𝑎𝑏) (𝑚𝑜𝑑 𝑛), ℤ𝑛 is  

        a ring (we will show this later). 

        For example, in ℤ12,    7 ∙ 8 = (7(8)) (𝑚𝑜𝑑 12) 

         = 56  (𝑚𝑜𝑑 12) 

                            = 8.  

Notice that this is a little “weird”.  In a group if 𝑎 ∙ 𝑏 = 𝑏 then 𝑎 is the identity 

element. That’s not the case, in general, for rings.  

 

Ex.      If 𝑅1, 𝑅2, … , 𝑅𝑛 are rings, we can form 𝑅1 × 𝑅2 × … × 𝑅𝑛 of all  

         ordered 𝑛-tuples (𝑟1, 𝑟2, … , 𝑟𝑛), where 𝑟𝑖 ∈ 𝑅𝑖. We define addition  

          and multiplication of 𝑛-tuples by component (as we did with groups). Since   

          each component satisfies the ring axioms, so does the direct product  

                 𝑅1 × 𝑅2 × … × 𝑅𝑛. Thus  𝑅1 × 𝑅2 × … × 𝑅𝑛 is a ring and is called the  

                  direct product of rings 𝑹𝒊. 
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 We will write 𝑛 ∙ 𝑎 = 𝑎 + 𝑎 + ⋯ + 𝑎, 𝑛-times. Note this is not 

 necessarily the multiplication in the 𝑅. For example, if 𝑅 = 𝑀2(ℝ) 

 and 𝐴 ∈ 𝑅, then 3𝐴 = 𝐴 + 𝐴 + 𝐴. In fact, 3𝐴 wouldn’t even make 

 sense for matrix multiplication (at least as written) because 3 is not a 

          2 × 2 matrix.   

 

 If 𝑛 < 0, an integer, 𝑛 ∙ 𝑎 = (−𝑎) + (−𝑎) + (−𝑎) + ⋯ + (−𝑎).  

 

 We define 0 ∙ 𝑎 = 0, where the 0 on the left hand side is 0 ∈ ℤ, and        

          0 on the right hand side is the 0 ∈ 𝑅 (which might not be a number. For 

            example, It could be a matrix or a function).  

 

Theorem: If 𝑅 is a ring with additive identity 0, then for any 𝑎, 𝑏 ∈ 𝑅: 

1) 0𝑎 = 𝑎0 = 0. 

2) 𝑎(−𝑏) = (−𝑎)𝑏 = −(𝑎𝑏). 

3) (−𝑎)(−𝑏) = 𝑎𝑏. 

 

Def.  For rings 𝑅 and 𝑅′, a map 𝜙: 𝑅 → 𝑅′ is a ring homomorphism if for all 

 𝑎, 𝑏 ∈ 𝑅. 

1)    𝜙(𝑎 + 𝑏) = 𝜙(𝑎) + 𝜙(𝑏) 

2)          𝜙(𝑎𝑏) =  𝜙(𝑎)𝜙(𝑏). 

Note: Since 𝜙 is also a group homomorphism of (𝑅, +) to (𝑅′, +′) all of the 

                 properties of group homomorphism hold. In particular, 𝜙 is 1-1 if, and only   

                  if, ker 𝜙 = {𝑎 ∈ 𝑅| 𝜙(𝑎) = 0′} is {0} ∈ 𝑅. 
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Ex.    Let 𝐹 be the ring of all functions 𝑓: ℝ → ℝ. For every 𝑎 ∈ ℝ we have 

 the evaluation homomorphism 𝜙𝑎: 𝐹 → ℝ by 𝜙𝑎(𝑓) = 𝑓(𝑎). 

𝜙𝑎(𝑓 + 𝑔) = (𝑓 + 𝑔)(𝑎) = 𝑓(𝑎) + 𝑔(𝑎) = 𝜙𝑎(𝑓) + 𝜙𝑎(𝑔). 

                𝜙𝑎(𝑓𝑔) = (𝑓𝑔)(𝑎) = 𝑓(𝑎)𝑔(𝑎) = 𝜙𝑎(𝑓)𝜙𝑎(𝑔). 

 This homomorphism is important because finding a root of an equation is 

            the same as finding 𝑝 ∈ ℝ (or ℂ) such that  

𝜙𝑝(𝑓) = 𝑓(𝑝) = 0. 

 So 𝑓 is in the kernel of 𝜙𝑝.   

 

Ex.     Show that  𝜙: ℤ → ℤ𝑛 where 𝜙(𝑧) = 𝑧 (𝑚𝑜𝑑 𝑛) is a ring 

         homomorphism for each positive integer 𝑛.  

 

           From group theory we know: 

𝜙(𝑧 + 𝑤) = 𝜙(𝑧) + 𝜙(𝑤). 

           To show 𝜙(𝑧𝑤) = 𝜙(𝑧)𝜙(𝑤) write: 

𝑧 = 𝑞1𝑛 + 𝑟1 and 𝑤 = 𝑞2𝑛 + 𝑟2 where 0 ≤ 𝑟1, 𝑟2 < 𝑛. 

            𝑧𝑤 = (𝑞1𝑛 + 𝑟1)(𝑞2𝑛 + 𝑟2) = 𝑛(𝑞1𝑞2𝑛 + 𝑟1𝑞2 + 𝑟2𝑞1) + 𝑟1𝑟2.  

 

  Thus, 𝜙(𝑧𝑤) = 𝑟1𝑟2 (𝑚𝑜𝑑 𝑛).                                                                

            But since 0 ≤ 𝑟1, 𝑟2 < 𝑛: 

            𝑟1 = 𝜙(𝑧)  and  𝑟2 = 𝜙(𝑤)  ⟹ 𝜙(𝑧𝑤) = 𝜙(𝑧)𝜙(𝑤).   

 

Note:  From group theory we know the factor group ℤ/𝑛ℤ is isomorphic to ℤ𝑛. 

          The same will turn out to be true for ℤ/𝑛ℤ as a factor ring. 
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Def:   An isomorphism 𝜙: 𝑅 → 𝑅′ from a ring 𝑅 to a ring 𝑅′ is a ring 

           homomorphism  that is 1-1 and onto. 

 

Not every group isomorphism (or homomorphism) is a ring isomorphism (or 

homomorphism).  

 

Ex.     Prove that the rings ℤ and 5ℤ are not isomorphic (although they are 

          isomorphic as groups under addition by 𝜙: ℤ → 5ℤ,  𝜙(𝑥) = 5𝑥).  

 

 Assume 𝜙: ℤ → 5ℤ is a ring isomorphism. 

 Then, 𝜙(𝑎 + 𝑏) = 𝜙(𝑎) + 𝜙(𝑏) and 𝜙(𝑎𝑏) = 𝜙(𝑎)𝜙(𝑏). 

 Then        𝜙(2𝑎) = 𝜙(𝑎) + 𝜙(𝑎) = 2𝜙(𝑎). 

 But          𝜙(2𝑎) = 𝜙(2)𝜙(𝑎) 

   ⇒ 𝜙(2) = 2 

 But 2 ∉ 5ℤ, thus 𝜙 cannot be an isomorphism.  

          For example, if 𝑎 = 3 and 𝜙(𝑥) = 5𝑥: 

                      𝜙(6) = 𝜙(3 + 3) = 𝜙(3) + 𝜙(3) = 15 + 15 = 30 

                    𝜙(6) = 𝜙(2 ∙ 3) = 𝜙(2) ∙′ 𝜙(3) = 10 ∙′ 15 = 150. 

           which is a contradiction, so 𝜙 is not a ring isomorphism. 
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Fields 

Many rings have a multiplicative identity element. For example, 1 is the 

multiplicative identity element (i.e. 1 ∙ 𝑥 = 𝑥 for all 𝑥 ∈ 𝑅) for the rings ℂ, ℝ, 

ℚ, and ℤ. But 2ℤ is a ring and it doesn’t have a multiplicative identity element. 

 

Def.   A ring with a multiplicative identity element is a ring with unity. We will call 

          this multiplicative identity element 1 (although it could be a matrix or 

          function). 

 

Ex.    If 𝐺𝐶𝐷(𝑞, 𝑟) = 1 for positive integers 𝑞 and 𝑟, show that the rings 

        ℤ𝑞𝑟  and ℤ𝑞 × ℤ𝑟  are isomorphic.  

 

Additively, ℤ𝑞𝑟  and ℤ𝑞 × ℤ𝑟 are both cyclic abelian groups of order 𝑞𝑟.    

1 is a generator for ℤ𝑞𝑟  and (1, 1) is a generator for ℤ𝑞 × ℤ𝑟. 

If we let 𝜙: ℤ𝑞𝑟 → ℤ𝑞 × ℤ𝑟  by 𝜙(𝑛 ∙ 1) = 𝑛 ∙ (1, 1) this is an additive 

group isomorphism since 𝜙 clearly 1-1, onto, and 

                      𝜙(𝑛 + 𝑚) = (𝑛 + 𝑚)(1, 1) 

            = 𝑛(1, 1) + 𝑚(1, 1) 

                                        = 𝜙(𝑛) + 𝜙(𝑚).  

 

1 is the multiplicative unity in ℤ𝑞𝑟  and (1, 1) is the multiplicative unity in 

ℤ𝑞 × ℤ𝑟. So: 

𝜙(𝑛𝑚) = 𝑛𝑚(1, 1) = [𝑛(1, 1)] ∙ [𝑚(1, 1)] = 𝜙(𝑛)𝜙(𝑚). 
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Note: a direct product 𝑅1 × 𝑅2 × … × 𝑅𝑛 of rings is commutative or has unity 

          if, and only if, each 𝑅𝑖 is commutative or has unity. 

 

Def.   Let 𝑅 be a ring with unity 1 ≠ 0. An element 𝑢 in 𝑅 is a unit of 𝑅 if it has 

         a multiplicative inverse in 𝑅. If every non-zero element of 𝑅 is a unit, then 

         𝑅 is a division ring (or skew field). A field is a commutative division ring. A 

           non-commutative division ring is called a “strictly skew field.” 

 

Ex.      Find the units of ℤ6.   

 

          𝑎 ∈ ℤ6 is a unit of ℤ6 if there exists a 𝑏 ∈ ℤ6 such that 

           𝑎𝑏 = (𝑎𝑏) (𝑚𝑜𝑑 6) = 1.  

1 is a unit since 1 ∙ 1 = 1.  

 

No even number can be a unit in ℤ6 because if 𝑎 is even, then 𝑎𝑏 ∈ ℤ is 

even (if 𝑏 is an integer) so 𝑎𝑏 (𝑚𝑜𝑑 6) ≠ 1. Thus, 2 and 4 are not units.   

 

 (3)(2) (𝑚𝑜𝑑 6) = 0,       (3)(3) (𝑚𝑜𝑑 6) = 3,   

  (3)(4) (𝑚𝑜𝑑 6) = 0,      (3)(5) (𝑚𝑜𝑑 6) = 3.    

   So 3 is not a unit. 

 

(5)(5) (𝑚𝑜𝑑 6) = 1 so 5 is its own inverse and 5 is a unit.  

 

Thus, 1 and 5 are the only units in ℤ6. Thus, ℤ6 is not a field. We will see 

later that the only units in ℤ𝑛 are 𝑚 ∈ ℤ𝑛 such that 𝐺𝐶𝐷(𝑚, 𝑛) = 1. 
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Ex.     Show that ℤ3 is a field.  

 

          ℤ3 is a commutative ring and 1, 2  (2 ∙ 2 = 1 (𝑚𝑜𝑑 3)) are units. 

         In fact, ℤ𝑝, where 𝑝 is a prime number, is a field because        

         𝐺𝐶𝐷(𝑚, 𝑝) = 1  where 𝑝 is prime and 𝑚 is an integer 1 ≤ 𝑚 < 𝑝, so 

           all elements except 0 are units. 

 

 

Ex.    ℤ is not a field because 3, in particular, has no multiplicative inverse 

          (neither do any other elements of ℤ except 1 and −1).   

 

Analogous to subgroups, a subring 𝑅′ of a ring 𝑅 is a subset of 𝑅 and is a ring 

under + and ∙ defined on 𝑅.  A subfield 𝐾′ of a field 𝐾 is a subset of 𝐾 and is a 

field under + and ∙ defined on 𝐾. 


