Factor/Quotient Groups

Def. Let H be a normal subgroup of a group G (i.e. gH = Hg, forany g € G).
We define G /H (called “G mod H”) to be the set of distinct cosets of H in G.
G/H = {alH, azH, }

We define the product of two elements (i.e. cosets) of G /H by:

HYOH) = {(ch) o) |y € 1Y = xyH

G /H is a group with this multiplication and is called a factor group or

quotient group.

First, let’s show if H is a normal subgroup of G then

(xH)(yH) = {(xhl)(yhz) |h1,h2 € H} is equal to xyH.

(xhy)(yh,) = x(hyy)h,, because multiplication is associative.
Since H is normali.e. yH = Hy forally € G, thereisan h; € H

such that hyy = yhs.

So (xhy)(Yhz) = x(hyy)h,
= x(yh3)h;
= xy(hszh,) € xyH.



Let’s show G /H is a group.

0) We just saw that it’s closed under multiplication.

1) The multiplication is associative because the group multiplication in G is
associative.

(aH)(bHcH) = (aH)(bcH) = (abc)H
(aHbH)(cH) = (abH)(cH) = (abc)H.

2) The identity element is the coset eH = H.
3) Given aH, a~1H is the inverse element (coset) in G /H since
(aH)(a™*H) = (aa Y)H = eH = H.

Ex. Let G = Zand H = 4Z = {...,—8,—4,0,4,8 ... }. Identify the
elementsof G/H = Z/47. .

Since G is abelian, H is a normal subgroup of G.

The factor group Z/4Z. is the set of cosets of H = 4Zin G = Z.
That is, the elements of G /H are:
0+4Z=1{...,—8,—4,0,4,8 ...}
1+4z2=1{..,-7,-3,1,5,9 ...}

2+47Z ={...,—6,—-2,2,6,10 ...}
3+4Z=1{...,—5,—-1,3,7,11 ... }.

If we want to “multiply” two elements, say 2 + 4Z and 3 + 47Z,
we do it by:

(2+47)(3+47) = (2+3) +4Z =5+ 47 = 1 + 4.



Ex. What is the identity element of Z/47Z7? What is the inverse element of
3+ 477

Any element of Z /47 looks like the set m + 47,
wherem = 0,1, 2, or 3.
The identity element of Z/4Z. is just 4Z. since:

(AZ)Y(m + 4Z) = (0+m) + 4Z = m + 4Z.

To find the inverse of 3 + 47Z we want the coset m + 47 such that:
(m+4Z)(3 + 4Z) = AZ
B3+ m) +4Z = 4Z.
Soweneed3+m = 0mod 4orm =1,

so 1 + 47 is the inverse element of 3 + 4Z.
Notice Z/4Z. looks a lot like Z,.
In fact there’s a simple isomorphism from Z /47 onto Z,.

¢:2/4Z - Z, by p(m + 4Z) = m.

By similar reasoning Z/nZ is isomorphic to Z,,, forany n € Z*.



Ex. Let G = R be a (abelian) group under addition and let ¢ € R .
The cyclic subgroup H =< ¢ > of R contains:
{..—3c,—2¢,—¢,0,c,2¢c,3c, ... }.

Describe the elements of G /H.

Every coset of H, mH where m € Ris:
{..—3c+m,—2c+m,—c+mymm+c,m+ 2c,m+ 3¢, ...}
Notice that if m,; and m, differ by an integer multiple of ¢ you get the

same coset.

Forexampleifc =m, my = %, m, =%+ 2T:
H={.-3n—-2n,—-n 0, n, 2r, 3m,...}
m1H={...,—37T+%, —27T+%, —T[-l—%, %, 7T+%, 2m+ -, ... }
moH ={.., =31+ (+2n),—2n + 5+ 21), —m + (5 + 21), (5 + 27), ..}

={...,—n+1, 2 w41, 2n+3,...}=m1H.
2 2 2 2

So the group G/H = R/< ¢ > is the set of cosets of the form m + CZ,
where 0 < m < c¢ . This group is isomorphic to:

R, = {real numbers modulo c}. That is, two real numbers are the same if
their difference is an integer multiple of ¢ (analogous to Z,,). So 0.5 and
0.5 + 3m are the same in R;.

The isomorphism is:

PR/ <c>> R, byp(m+cZ)=m; 0<m<c.



Ex. Find the order of the factor group (Zy X Z4)/ < (1,1) >.

The order of G /H is the number of cosets of H in G. If G is a finite group

|G|
we saw that this number was m

Inthiscase G = Z, X Z, so |G| = (2)(4) = 8.

The order of < (1,1) > is the order of (1,1) in Z, X Z,.

1isorder 2 in Z,, and 1 is order 4 in Z,. The LCM(2,4) = 4, so

< (1,1) >isorder4.Thus [(Z, X Z,)/ < (1,1) >| = g = 2.

Ex. Find the order of (1,7)+< (1, 3) > in the factor group
(Zy X L12)/ < (1,3) >.

H =< (1,3) >= {(1,3), (2,6), (3,9), (0,0)}

So what we want to know is the smallest k so that
((1,7)+< (1,3) >)* =< (1,3) >. That s the same as finding the
smallest k so that (1,7)% is any of the elements of

<1,3>={(1,3),(2,6),(3,9),(0,0)}.

(1,7)2=(1,7)+(1,7) =(2,2) (since7+7 =2 mod 12)
(1,7 =01,7+@1,7H+1,7)=3B9 e<(1,3) >

So (1,7)+< (1,3) > hasorder 3in (Z4 X Z15)/ < (1,3) >.



Theorem: Let H be a normal subgroup of G.

Then ¢p: G = G/H by ¢p(x) = xH is a homomorphism with H

as kernel.

Proof:

Let X,y € G, then ¢p(xy) = xyH = (xH)(yH) (Since H is normal)
= ¢(x)p(y).

H is the identity elementin G /H.
¢(x) = xH = H if,and only if, x € H.
So H is the kernel of ¢.

The Fundamental Homomorphism Theorem: Let ¢: G — G' be a group
homomorphism with kernel H. Then ¢p[G] is a group, and
T:G/H — ¢[G] givenby T(gH) = ¢p(g) is an ismorphism.

If m: G — G /H is the homomorphism given by m(g) = gH,
then ¢p(g) = tm(g) foreach g € G.




Another way to think about this theorem is that if we can find
¢: G — G', ahomomorphism onto G', and H = Ker(¢),

then G' is isomorphicto G/H (written G' = G /H).

Ex. Classify the group (Zg X Z,)/ ({0} X Z,)

m: Zg X L, — Zg given by m(x,y) = x is a homomorphism of
Zg X Z4 onto Zg with kernel {0} X Z,.

By the fundamental homomorphism theorem we conclude that

(Zg X Z4)/ ({0} X Z,) is isomorphic to Zg.

Ex. Show S,/ A,, isisomorphicto Z,.

¢:S,, > Z,,byp(c) =0ifgiseven (i.e.in 4,)
= 1ifois odd
is a homomorphism of S, onto Z,.

The kernel of ¢ is A, s0 S,,/ A,, = Z, by the fundamental
homomorphism theorem.



Theorem (Equivalent characterizations of Normal Subgroups): The following 3

conditions are equivalent.

1) ghg ! € Hforallg € G and h € H.
2) gHg™ 1 = H forallg € G.
3) gH = Hg forallg € G.

Proof: 1 = 2. Assume ghg™! € H forallg € Gand h € H.
Thus gHg™! = {ghg™'|h € H} € H forallg € G.
Now let’s show gHg ™! 2 H forall g € G.
Let h € H. Replacinggby g tinghg ' € H

weget: g th(g )1 =g thg = h; € H.
Thus,h = ghyg~ ' € gHg tsogHg ™! 2 H.

Thus, gHg™1 = H.
2=>3 gHg'=H=gH=Hgforallg €G.

3=>1 Suppose gH = Hg forallg € G.Then, gh = h; g, so
ghg ™t =h, € Hforallg € G andallh € H.

Def. Anisomorphism ¢: G — G of a group with itself is an automorphism. The
automorphism ig: G = G by iyz(x) = gxg~" forall x € G is the inner

automorphism of G by g. Performing ig on X is called conjugation of Xx by g.

Thus, H is a normal subgroup of G if H is invariant under all inner

automorphisms of G.



